
Some linux tricks

Yves-Henri Sanejouand

December 4, 2023

Bash line commands

awk

To manipulate a file with well defined fields (e.g. columns), line by line.

Examples:

Prompt> awk ’{ if ($1 > 0) { n=n+1 ; print n } \

else print $1 }’ file

Prints the current number of lines found with a positive value of the first
field of the file. Otherwise, prints its value.

Prompt> awk ’BEGIN { s=0 } { if (NF > 0) s=s+$1+1 } \

END { print s }’ file

Prints the sum of first fields (+1). After BEGIN : the command executed
before reading the file. After END : the command executed after reading the
file. NF is an awk variable giving the number of fields in the current line.

Prompt> awk ’{ if (substr($1,1,5) == "Keywd") \

print substr($2,2,length($2)-1) ; else print $3 }’ file

Prints end of second field of each line of the file if first field starts with Keywd ;
prints third field otherwise. 1,5 means: substring starts at first character and
is five characters long.

Prompt> awk -v x="$value1" -v y="$value2" ’{ print x*y*$1 }’ file

Prints first field of file multiplied by the product of $value1 and $value2.
Quoting variables is recommended (in case of leading blanks).

1

Prompt> awk -F’X’ ’{ print NF-1 }’ file

Counts and prints the number of times word X is found in each line of the
file. -F provides the separator between fields.

Prompt> awk -F’[_=\]’ ’{ print $NF }’ file

Prints the last word of each line of the file, words being separated either by
an underscore, the sign equal or a single blank.

Prompt> awk -F’_|=| AND]’ ’{ print substr($NF,2) }’ file

Prints the last word of each line of the file, except the first character, words
being separated either by an underscore, the sign equal or the word AND
(with blanks on both sides).

Prompt> awk ’{ if ($1 == "Keywd") n=n+1 } END { print n }’ file

Prints the number of times Keywd is found in first column of file. END
means: wait for the end of file before doing the next action. Note that grep
would print the matches wathever the column.

Prompt> awk ’{ $2=$2+1 ; print FILENAME ": " $0 }’ file

Adds one to each element of the second field of the file and prints the filename
before each modified line ($0). FILENAME is an awk variable.

awk ’{ if (substr($1,1,1) == "!") \

{ f=FILENAME ; n=split(f,wf,"/") ; print wf[n], $2 }}’ file

Prints filename without the directory (like basename), followed by second
field for all lines starting with !.

awk ’{ if (substr($1,1,1) == "!") { gsub("x","y",$1) ; print } \

else print }’ file

Substitutes x by y in first field of all lines starting with !.

awk ’{ if ($0 ~ "<<") f=0 }{ if ($0 ~ ">>") f=1 } \

{ if (f == 1) print }’ file

Prints all lines after those containing >> and before those containing <<.

Prompt> awk ’{ a[$1]=a[$1]+1 } END \

{ for(i in a) print i, a[i] }’ file

Prints the number of times the different first fields are found in file.

2

Prompt> awk ’{ for (i=1 ; i <= NF ; i++) { print $i }}’ file

Prints all fields of file in a single column.

Prompt> awk ’{ OFS="," ; print $1, $2, $3 }’ file

Prints three first fields, separated by commas. OFS is the awk variable that
provides the separator on output.

Prompt> echo $word | awk -F’.’ ’{ OFS="." ; $NF="txt" ; print $0 }’

Replaces the last string after a dot by txt in variable word.

Prompt> awk ’{ ORS=" " ; print $1 }’ file

Writes the first column of file in a single line. ORS is the awk variable that
provides the end-of-line (\n by default).

Prompt> awk ’{ printf "%-10s%4s%7.2f\n", $1, $2, $3 }’ file

Formatted output for two chains of characters followed by a real number. By
default: righ-justified, but it can also be left justified (as in first field). \n
(new line) needs to specified.

Prompt> awk ’{ print > "file"$1 }’ file

Prints lines in different files, their suffix being the first field.

Prompt> awk ’BEGIN { print (0.1 > 1e-5) }’

Prints 1, since the test is true. Would print 0 otherwise. Note that awk
handles the scientific notation, at variance with bc. However, beware of
overflows.

Nota bene: Conditional statements are loosely checked by awk and error
messages are scarce. As a result, syntax errors can have major consequences.
Tip: The field separator can be a whole word or a regular expression. Note
that when it is not a blank, blanks are included in words.

3

basename

To get the main part of a filename, without the directory.

Example:

Prompt> basename file suffix

Also removes the suffix, that is, the end of the filename, if it ends by suffix.

Nota bene: useful in scripts.

date

To change the date of the system.

Example:

Prompt> date -s ’2017-06-27 11:31:00’

Prompt> date -s ’11:31:00’

Changes only the hour.

Nota bene: For root users.

4

find

To find file(s).
Major tip: a command can be executed for each of them.

Examples:

Prompt> find your_directory -type f -mtime -60 -mtime +1

Starting from your directory, looks recursively for files (-type f) modified
between yesterday (+1) and sixty days ago.

Prompt> find your_directory -name *.html \

-exec grep -H ’searched_key’ {} \;

Finds files recursively, looking for (grep) searched key inside files whose name
ends with .html (-H adds the filename to the output).

Prompt> find . -name *.html -exec cp {} . \;

Starting from current directory (.), copies (cp) recursively the files whose
name ends with .html to current directory.

Prompt> find . -name *.html \

-exec sed -i ’s/searched_key/new_key/g’ {} \;

Modifies files recursively, replacing (sed) searched key by new key inside files
whose name ends with .html.

Prompt> find . -name "*.html" ! -path ’./not_there/*’ \

-exec cp -u {} your_directory/ \;

Copies found files in your directory, except those from directory not there,
and only if they are newer (-u) than those already there.

Prompt> find . -name *.html \

-exec sh -c "grep ’searched_key’ {} | \

grep ’other_key’" \;

Prints lines with both searched key and other key. Going through sh allows
to execute a series of commands for each file whose name ends with .html.

Nota bene:
{} means: for each file found.
The backslashes before ”*” and ”;” are required, in order to avoid their prior
interpretation by the shell. Tip: Quotes also work.
Tip: Just to find files, consider locate, which is quicker.

5

grep

To find strings inside files.

Examples:

Prompt> grep -f file1 file2

For each string found in each line of file1, prints the lines of file2 with the
string.

Prompt> grep -o -f file1 file2 | grep -v -f - file1

Prints the strings of file1 not found in file2 (-o: prints only the string found
in file2).

Prompt> grep -o -b string file

For each string found in the file, prints a line with the string and the byte
where it starts (-b).

Prompt> grep -n string file

Prints the line number followed by the line with the string.

Prompt> grep -o . file

Prints all characters, with a single one per line.

Prompt> grep -n -- negative-number file

Prints the line numbers of file with the negative number (- - means that what
follows is not interpreted as an option).

Prompt> grep -A5 --no-group-separator string file

Prints the lines of file with the string, and the five (-A5) following ones, with
no separator after each series of six (1+5) lines.

Prompt> grep --color=’auto’ -P -n "[\x80-\xFF]" file

Prints the lines of file where there are non-ASCII characters and highlights
them (-P means that perl regular expressions are used).

6

join

To fuse a pair of files that have common keys.

Examples:

Prompt> join file1 file2

This prints the content of file1 and file2 when the same key is found in their
first columns.

Prompt> join -1 2 -2 3 file1 file2

Here, keys are expected in column two of file1 and column three of file2.

Prompt> join -t’,’ -a 1 -a 2 -e NULL -o 0,1.2,2.2 file1 file2

To print NULL when the key is missing in file1 (-a 2) or file2 (-a 1). The -e
option works only when the -o (output format: file number before the dot,
column number after) one is specified (-t provides the separator on output).

Prompt> join -t’,’ -a 1 -a 2 -e NULL -o auto file1 file2

Keeps all fields on output (auto is a rather recent option).

Nota bene: Keys have to be in same order (e.g. sort -k) in both files.

paste

To join files side by side, or to join the lines of a given file.

Examples:

Prompt> paste -d’;’ file*

Prints files side by side (-d is the separator).

Prompt> paste -s -d’ \n’ file

Joins three consecutive lines.

7

pgrep

To get information about running processes.

Example:

Prompt> pgrep -P $$

Shows subprocess identifiers.

Nota bene: useful in scripts.

ps

To get information about running processes.

Example:

Prompt> ps -eo pid,user,lstart,cmd

Shows the process identifier (pid), the starting time (lstart)...

RANDOM

To get a random integer.

Example:

Prompt> echo $((1 + RANDOM % 10))

Provides an integer between 1 and 10.

Nota bene: There is also a built-in bash variable ($RANDOM).

8

rename

To rename file(s).

Example:

Prompt> rename ’s/pdb/ent/’ *.pdb

Changes the name of all files whose name ends with .pdb.

Nota bene:
The syntax for the substitution like with sed or vi.
This means that, in the above example, only the first ”pdb” string found
is changed. For instance, a file named pdbxxx.pdb is renamed as follows:
entxxx.pdb.

SECONDS

A built-in bash variable counting seconds.

Example:

Prompt> SECONDS=0 ; bash-command ; echo $SECONDS

Prints how long the bash-command lasted.

9

sed

To edit a file from outside.

Examples:

Prompt> sed -i ’s/chain/other/g’ file

Substitutes all instances of chain by other in file. The syntax is like in vi. -i
means: in file (–in-place).

Prompt> sed -i ’/string /d’ file

Deletes (d) all lines with string in file.

Prompt> sed -i.bak ’9,12d’ file

Deletes lines 9 to 12, the original file being saved with a .bak suffix.

Prompt> sed ’9,12d;13q’ file

Deletes lines 9 to 12, then quit on next line. Can save time in the case of
large files.

Prompt> sed ’1i Your text’ file

Inserts a first line with Your text.

Prompt> sed -n ’/string1/,/string2/p’ file

Prints lines between string1 and string2.

Prompt> sed -n -e ’1,12p’ -e ’15p’ file

Prints (p) lines 1 to 12 and 15. -e: allows to specify multiple commands.

sort

To sort a file by columns.

Examples:

Prompt> sort -k1,1 -k3,3n file | tail -n

file is sorted using column 1 and then column 3, by integers (n) in the latter
case. Last five lines are shown (tail).

Prompt> sort -V -k1 file

Column 1 of file is sorted according to numbers within the text.

10

tee

Appends input to output(s).

Example:

Prompt> echo yhs | tee -a *.dat

Adds a line with yhs to all files with a dat suffix.

wget

Gets files or directories through the internet.

Examples:

Prompt> wget http\://www.remote-host.com/remote_file

Gets remote file.

Prompt> wget -r -l2 http\://www.remote-host.com/remote_directory

Gets remote directory and its sub-directories (-l2 : two sub-levels).

Prompt> wget -r http\://www.remote-host.com

Gets the whole site (-r : recursively).

11

xargs

Provides arguments one by one.
Tip: For commands that do not accept more than one argument.

Examples:

Prompt> ls *.tar | xargs -I {} tar xf {}

{} is replaced by each argument provided by xargs, one after the other, and
all files found in the local tar-files (*.tar) are extracted.

Prompt> cat file | xargs -I {} cp ../file-directory/{} \

other-directory

Copies files that are in file-directory and whose names are listed in file.

Prompt> ls *.pdb | xargs -n 1 cp -t other-directory

Or listed (with another syntax). In both cases, xargs provides one argument
per line to cp, which copies them to other-directory.

Prompt> cat file | xargs -I {} sh -c ’mv {}* other-directory’

For expanding the wildcard, it is necessary to go through sh (here, only the
beginning of the filenames is found in file).

12

Latex tools

makeindex

Makes an index for a Latex file.

In the preamble of the Latex file:

\usepackage{makeidx}

\makeindex

In the text:

\index{Indexed-word}

To gather them by topic:

\index{Indexed-topic!Indexed-word}

Then, where you want to see the index printed:

\printindex

To actually see it, you need to run Latex, then makeindex.
This can be done through texmaker.

texcount

Counts words in a Latex file. That is: Latex commands are ignored.

Example:

Prompt> texcount -sum myfile.tex

FILE: myfile.tex
Sum count: 2373
Words in text: 2261
Words in headers: 97
Words in float captions: 4
Number of headers: 25
Number of floats: 0
Number of math inlines: 11
Number of math displayed: 0

Prompt> texcount -v -sum myfile.tex

Checks what it is doing.

13

Index

ASCII, 6
awk, 1

FILENAME, 2
NF, 2
OFS, 3
ORS, 3

basename, 3
bash variables

$RANDOM, 8
$SECONDS, 8

bc, 3

cat, 10
cp, 5, 10

date, 4

find, 5

grep, 5, 6

Internet, 10

join, 7

Latex, 11
Count, 11
Index, 11
makeindex, 11
Preamble, 11
Words, 11

locate, 5
ls, 10

paste, 7
perl, 6
Process, 7
ps, 7

RANDOM, 8

rename, 8
Root, 4

sed, 5, 8, 9
Separator, 3, 6, 7
sh, 5, 10
sort, 7, 9

tail, 9
tar, 10
texcount, 11
texmaker, 11

vi, 8, 9

wget, 10

xargs, 10

14

